Syllabus for ABT700 Principles of Biotechnology

NOTE: This syllabus document contains the basic information of this course. The most current syllabus is available in the full course.

Course Description

Principles and techniques pertaining to biotechnology and its applications to our society. Survey of classical and emerging techniques.

Prerequisite(s)

None.

Course Outcomes

Upon completing this course, you will be able to do the following:

- Appraise applications of biotechnology in various settings.
- Demonstrate an understanding of genes, genomes and their organization, gene expression, genetic variation, genetic engineering, protein expression, and post-translational modifications.
- Understand the core technologies currently used in biotechnological research.
- Compare various biotechnological approaches and recommend appropriate strategies for problem solving.
- Critique journal articles and ascertain the broader impacts of such studies.
- Synthesize and communicate ideas to solve biotechnological problems.

Course Requirements/Components

WRITTEN ASSIGNMENTS:

The course features a variety of written assignments. This includes response questions to module topics, case studies, scenarios, and journal article reviews.

DISCUSSIONS:

You will discuss selected topics with your peers through a series of discussion prompts.

ORAL PRESENTATION of RESEARCH PAPER:

During module 9, you will select a research paper to present at the end of the semester in an oral presentation. Sign-up is on a first-come/first-served basis. Most of the papers that we cover during the semester are eligible for this presentation as are relevant papers that you find in the literature and have me approve. My only criteria for approval are that the paper should be related to a topic we cover in this class, you may not be an author on the paper, and it should be sufficiently complex so as to be somewhat challenging.

The guidelines on preparing the presentations will be made available in Canvas. This activity is like a cumulative final as you will apply what you have learned throughout the semester to understand. In addition to submitting your presentation (worth 50 points), you will be randomly assigned two presentations prepared by your fellow classmates for peer evaluation and reflection of what you have learned. This activity will enable you to appraise the applications of biotechnology in many different fields.

Note that the oral presentation and peer grading assignments in modules 14 and 15 cannot be submitted late, as they are due in the last two weeks of the course. The oral presentations must be submitted on time to give other students ample time to perform their peer grading during the last week of the course.

PRE- and POST-COURSE SURVEYS:

You will be asked to complete a pre-course survey during week 1 to understand your backgrounds and educational experiences, and a post-course survey during the last week to assess your learning and the quality of instruction. These surveys will be graded based on whether or not you participated and completed, not based on 'right or wrong answers'. Students will receive 10 easy points for completing each survey.

Grading

The following grading scale will be used to evaluate all course requirements and to determine your final grade:

Grade	Percentage
	Range
А	93.5 - 100%
A-	90 - 93.49%
B+	87 – 89.9%
В	83 - 86.9%
B-	80 - 82.9%
C+	77 – 79.9%
С	73 – 76.9%
C-	70 – 72.9%
F	0 – 69.9%

Module	Assignments	Points
1	Pre Course Survey, Instructor and Student	53
	Introductions, Response Questions, Survey of Career	
	Opportunities, and Investigating and Communicating	
	Biotechnology	
2	Response Questions, The Central Dogma,	58
	Epigenome Literature Search, Noncoding RNAs in	
	SARS-CoV-2, and Optional Genetic Code, Mutation	
	Analyses, Decryption	
3	Response Questions, SARS-CoV-2 Spike Protein	53
	Cloning Exercise, High-level Literature Search	
4	Response Questions, Fixing a Broken PCR Reaction,	62
	Design a PCR Reaction, The SARS-CoV-2 RT-PCR	
	Diagnostic Panel	
5	Response Questions, Video-based Case Studies on	52
	Forward and Reverse Genetics, Forward and Reverse	
	Genetics Journal Article Review, Optional Reverse	
	and Forward Genetics Journal Article	
6	Response Questions, Proteins as Products, Protein	56
	Expression and Purification Journal Article Critique	
7	Response Questions, Monitoring Gene Expression at	57
	the Transcript-Level Journal Article, Monitoring	
	Gene Expression at the Protein and Metabolite-	
	Levels Journal Article	
8	Response Questions, The Hunt for the Golden State	62
	Killer, Modern DNA Forensic Analysis and	
	Implications, SARS-CoV-2 Journal Article Review	
9	Oral Presentation Topic, Response Questions,	55
	SARS-CoV-2 Vaccine Literature Review, Ethics in	
10	Microbial Biotechnology	
10	Response Questions, Communicating Plant	45
	Biotechnology for Crop Improvement, GMO or	
	OMG?, Optional Food Evolution	
11	Response Questions, CRISPR/Cas9 Modern	56
	Iransgenic Animals, Genetically Modified Animals,	
10	SAKS-COV-2 Animal Wodel Journal Article Review	27
12	Kesponse Questions, Immunotherapy Review Article	37
40	Review	
13	Response Questions, Gene Therapy – Prospects and	45
	Challenges, Limitations of Personalized Medicine	

14	Response Questions, Environmental DNA Sampling (2), Oral Presentation	95
15	Response Questions, SARS-CoV-2 Ethics and Biotechnology, Biotechnology Regulations, Post Course Survey	49
Total Points		835