Skip to content
Universities of Wisconsin
Call Now608-262-2011 Call 608-262-2011 Request Info Request Info Search the UW Extended Campus website Search
Wisconsin Online Collaboratives
  • About Us
    • About Us
    • Accreditation
    • Our Campus Partners
  • Degrees & Programs
  • Admissions & Aid
    • How to Apply
    • Admission Pathways
    • Important Dates
    • Tuition & Financial Aid
    • Transferring Credits
    • Contact an Enrollment Adviser
  • Online Learning
    • About Online Learning
    • Online Learning Formats
    • Capstone Projects
    • Success Coaching
    • Technology Requirements
  • Stories & News
Home Home / Capstone Projects / Computer-Aided Diagnosis (CAD) of Breast Cancer: Methods of Model Explainability

Computer-Aided Diagnosis (CAD) of Breast Cancer: Methods of Model Explainability

Program: Data Science Master's Degree
Location: Not Specified (remote)
Student: Teresa M. Bodart

The International Agency for Research on Cancer announced that in 2020 female breast cancer became the most diagnosed cancer worldwide and the most common cause of cancer-related death in women. Still, breast cancer generally has a good prognosis with timely detection and appropriate treatment. Recently, computer-aided diagnosis (CAD) systems have shown promising results in using artificial intelligence (AI) to detect malignant lesions in breast ultrasound (US) imaging. When working with AI in a clinical setting, however, the American College of Radiology advocates for radiologist understanding of the algorithms in use. Accordingly, this study contributes to an ongoing collaboration between the University of Wisconsin-La Crosse and Mayo Clinic Enterprise (BUS Project) by investigating three methods of AI explainability for the CAD software in development. Class activation maps, saliency maps, and attention map-enhanced class activation maps are compared to determine the most useful technique for visualizing regions in the US used to determine pathology. These visualizations could provide a radiologist with confidence in the black box algorithm when the lesion is localized, and reveal limitations in the model prediction when extraneous regions are highlighted. As more data becomes available and the CAD system is improved, it is the hope of this study that the BUS Project continues to develop and prioritize model explainability for the sake of responsible AI in healthcare. 

Let's Get Started Together

Apply Apply Schedule an Advising Call Schedule an Advising Call Request Info Request Info

This field is for validation purposes and should be left unchanged.
Are you interested in pursuing the degree or taking one or two courses?(Required)
Can we text you?(Required)

By selecting yes, I agree to receive updates about online degrees, events, and application deadlines from the Universities of Wisconsin.

Msg frequency varies depending on the activity of your record. Message and data rates may apply. Text HELP for help. You can opt out by responding STOP at any time. View our Terms and Conditions and Privacy Policy for more details.

Wisconsin Online Collaboratives will not share your personal information. Privacy Policy

Wisconsin Online Collaboratives

A Collaboration of the
Universities of Wisconsin

University of Wisconsin System

Pages

  • Our Degrees & Programs
  • How to Apply
  • Online Learning Formats
  • Our Campus Partners

Enrollment Advising

608-800-6762
learn@uwex.wisconsin.edu

Contact

780 Regent Street
Suite 130
Madison, WI 53715

Technical Support

1-877-724-7883
https://uwex.wisconsin.edu/technical-support/

Connect

  • . $name .facebook
  • . $name .linkedin
  • . $name .instagram
  • . $name .youtube

Copyright © 2026 Board of Regents of the University of Wisconsin System. | Privacy Policy