University of Wisconsin Extended Campus is now Wisconsin Online Collaboratives! This name reflects the partnerships of the 13 universities within the Universities of Wisconsin–our state's premier system of public higher education. Through these partnerships we will continue to support online degrees, certificates and courses–along with support services to you.

Capstone Projects

Exploring Graph Neural Networks in E-Commerce Recommendation Systems

Program: Data Science Master's
Location: Not Specified (remote)
Student: Bryce Fenlon

The objective of this project was to show the efficacy of graph network models in product recommendation for small to medium-sized E-commerce providers. To do this, I introduced and benchmarked three models for recommendation: singular value decomposition (SVD), neural collaborative filtering, and graph convolutional network. Each was tested on Movielens datasets of 100k and 1M records. For benchmarking I used RMSE and my own version for ‘hit ratio’ or the ratio of users for which the model recommended items that were present in the holdout data for that user to the total number of users tested. By the hit ratio measure the graph models performed almost twice as good as the other two models on the same amount of data. In the case of the smaller dataset this came with only a minor tradeoff in training time.